Dietary cholesterol reduces lipoprotein lipase activity in the atherosclerosis-susceptible Bio F(1)B hamster.

نویسندگان

  • Martina A McAteer
  • David C Grimsditch
  • Martin Vidgeon-Hart
  • G Martin Benson
  • Andrew M Salter
چکیده

We have compared lipoprotein metabolism in, and susceptibility to atherosclerosis of, two strains of male Golden Syrian hamster, the Bio F(1)B hybrid and the dominant spot normal inbred (DSNI) strain. When fed a normal low-fat diet containing approximately 40 g fat and 0.3 g cholesterol/kg, triacylglycerol-rich lipoprotein (chylomicron+VLDL) and HDL-cholesterol were significantly higher (P<0.001) in Bio F(1)B hamsters than DSNI hamsters. When this diet was supplemented with 150 g coconut oil and either 0.5 or 5.0 g cholesterol/kg, significant differences were seen in response. In particular, the high-cholesterol diet produced significantly greater increases in plasma cholesterol and triacylglycerol in the Bio F(1)B compared with the DSNI animals (P=0.002 and P<0.001 for cholesterol and triacylglycerol, respectively). This was particularly dramatic in non-fasting animals, suggesting an accumulation of chylomicrons. In a second experiment, animals were fed 150 g coconut oil/kg and 5.0 g cholesterol/kg for 6 and 12 months. Again, the Bio F(1)B animals showed dramatic increases in plasma cholesterol and triacylglycerol, and this was confirmed as primarily due to a rise in chylomicron concentration. Post-heparin lipoprotein lipase activity was significantly reduced (P<0.001) in the Bio F(1)B compared with the DSNI animals at 6 months, and virtually absent at 12 months. Bio F(1)B animals were also shown to develop significantly more (P<0.001) atherosclerosis. These results indicate that, in the Bio F(1)B hybrid hamster, cholesterol feeding reduces lipoprotein lipase activity, thereby causing the accumulation of chylomicrons that may be associated with their increased susceptibility to atherosclerosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bio F1B hamster: a unique animal model with reduced lipoprotein lipase activity to investigate nutrient mediated regulation of lipoprotein metabolism

BACKGROUND Bio F1B hamster is an inbred hybrid strain that is highly susceptible to diet-induced atherosclerosis. We previously reported that feeding a high fat fish oil diet to Bio F1B hamster caused severe hyperlipidaemia. In this study we compared the effects of various diets in the Bio F1B hamster and the Golden Syrian hamster, which is an outbred hamster strain to investigate whether genet...

متن کامل

Cholesterol-fed and transgenic rabbit models for the study of atherosclerosis.

The rabbit has been extensively utilized as an ideal model of atherosclerosis because of its size, easy manipulation, and extraordinary response to dietary cholesterol. The availability of spontaneously hypercholesterolemic model, Watanabe heritable hyperlipidemic rabbits (WHHL) and St. Thomas rabbits, has also provided insights into understanding human familiar hypercholesterolemia and atheros...

متن کامل

Saturated fat-rich diet enhances selective uptake of LDL cholesteryl esters in the arterial wall.

Plasma LDL levels and atherosclerosis both increase on a saturated fat-rich (SAT) diet. LDL cholesterol delivery to tissue may occur via uptake of the LDL particles or via selective uptake (SU), wherein cholesteryl ester (CE) enters cells without concomitant whole-particle uptake. It is not known how dietary fats might directly affect arterial LDL-CE uptake and whether SU is involved. Thus, mic...

متن کامل

Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis.

Atherosclerosis is a chronic inflammatory disease promoted by hyperlipidemia. Several studies support FOXP3-positive regulatory T cells (Tregs) as inhibitors of atherosclerosis; however, the mechanism underlying this protection remains elusive. To define the role of FOXP3-expressing Tregs in atherosclerosis, we used the DEREG mouse, which expresses the diphtheria toxin (DT) receptor under contr...

متن کامل

Role of Brown Fat in Lipoprotein Metabolism and Atherosclerosis.

Atherosclerosis, for which hyperlipidemia is a major risk factor, is the leading cause of morbidity and mortality in Western society, and new therapeutic strategies are highly warranted. Brown adipose tissue (BAT) is metabolically active in human adults. Although positron emission tomography-computed tomography using a glucose tracer is the golden standard to visualize and quantify the volume a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The British journal of nutrition

دوره 89 3  شماره 

صفحات  -

تاریخ انتشار 2003